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Overview 

• mathematical description of the crystalline lattice

• Miller indices

• Crystal directions and family of directions

• Reminder on Basics of Euclidian Geometry

• Crystal planes and Miller indices

• Zone axis

• Hexagonal system: the Miller-Bravais indices

• →Hammond Chapter 5
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Geometry of the unit cell
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right-handed set of crystallographic axes, x,y,z 
which point along the edges of the unit cell.
The origin of our coordinate system coincides with 
one of the lattice points

The length of the unit cell along the x,y and z 
direction are defined as a,b, and c. The angles 
between the crystallographic axis are defind by
α = the angle between b and c
β = the angle between a and c
γ = the angle between a and b

a, b, c, α, β, γ are collectively known as the lattice 
parameters (often also called ‘unit cell 
parameters’, or just ‘cell parameters’).

→ Miller indices are a coordinate system! 
→ it depends on the unit cell structure, and with that on the crystal system 



a



b

c



n̂



Origin and scale
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• Origin (0,0,0) can be defined anywhere in the crystal (on any lattice point)
In most cases the back left corner of the crystal is the conventional choice 

exception: hexagonal structure
• Scale: is the size of the unit cell, if 0 is the origin of the unit cell, 1 will be the origin for the next 

unit cell

• the x,y, z axes may NOT be perpendicular to each other, that depends on the crystal system! for 
hexagonal γ = 120°

x

y

z

(o,0,0)

(o,0,1)



Crystalline material

• in 3D: Bravais Lattice 
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Lattice point
r = 4a + 3b + c

set of 3 vectors
form the basis:
every lattice point is a 
linear combination with 
relative integers as 
coefficients

The Bravais lattice is expressed mathematically as an infinite 

set of points with translational symmetry along three axis that 

form a vector basis. Choosing an origin O, one can write

ℬ = 𝑃, 𝑶𝑷 = 𝑛1𝒂 + 𝑛2𝒃 + 𝑛3𝒄, (𝑛1,𝑛2 𝑛3) ∈ ℤ3



Lattice points 

• Lattice points and positions of atoms are given by the coordinates in the 
coordinate system.

• Example:
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b

c
Crystal Direction : r = λ(1a + 3b + 1c)

[1 3 1]

▪ Crystal directions are lines that pass through at least two lattice points.

▪ The direction can be defined by an origin (all lattice point can be an origin) and the 

coordinate of the other point in the lattice basis.  

▪ The coordinates, which are relative integers, represent the Miller indices. 

a

Crystal directions

8

if they are not integers,
multiply by common 
denominator to get the 
Miller index



Crystal directions
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direction OP and OQ

Coordinates point P: ½, 0,1  
vector OP = ½ a + c or   [1/2 0 1 ]

Coordinates point Q: ¼ ,0, ½   
vector  OQ = ¼  a + ½ c or   [1/4 0 ½]

Both vectors define the direction OP = OQ = OL

Directions are expressed with whole numbers:

[102] direction

direction SN
consider OM which is parallel to SN

Coordinates M: 1,-1,0

vector OM = a-b
direction SN and OM [ 1ത10] : when the number is 

negative a bar is added above the number

direction of basics lattice vectors a, b, c

[100], [010] and [001] 



Crystal directions
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to indicate directions, one reduces fractions

msestudent.com



[101] [110]

Crystal directions

11



Directions in hexagonal crystal
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A family of directions
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Depending on the symmetry of the crystal system different directions are equivalent

For cubic crystals, the directions [1 0 0], [ത1 0 0], [0 1 0], 
[0 ത1 0], [0 0 1], [0 0 ത1 ] are all equivalent by symmetry.
 
There is a special notation for directions of the same 
form: <100>, which in this case means the family made of 
the three basis axis a,b,c
the number of equivalent directions is called the 
multiplicity of the direction

the direction depends on the choice of origin and 
orientation of the axis, but the properties along a family 
of directions will be the same, by the symmetry of the 
crystal

what is the multiplicity of : <111> in the cubic system?

8 equivalent  <111> directions 



Family of directions: depending on crystal 
system
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Reminder: Basics of Euclidian Geometry
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▪ If we define an origin (0,0,0), all vectors are generated by the linear combination of (1,0,0), (0,1,0) and 
(0,0,1), that in engineering are often referred to as 𝒊, 𝒋, 𝒌.

▪ A vector 𝒂 is then a linear combination: ∃(𝑎𝑥, 𝑎𝑦, 𝑎𝑧) ∈ ℝ3:

▪ The following notation will be used: 

▪ Reminders: 
▪ The magnitude (or norm) of a vector:  𝒂 =

▪ The scalar (or dot) product: In cartesian coordinates, for two vectors in the orthonormal 
basis 𝒊, 𝒋, 𝒌, we have: 

          𝒂 ∙ 𝒃 = 𝑎𝑥𝑏𝑥 + 𝑎𝑦𝑏𝑦 + 𝑎𝑧𝑏𝑧

▪ The dot product brings forward the notions of length and angle and orthogonality. A geometric 
definition for two vectors that form an angle 𝛼 is: 

▪ With 𝑎 = 𝒂  and 𝑏 = 𝒃 . It is the projection of 𝒂 on 𝒃, or of 𝒃 on 𝒂. 
▪ If 𝒂 and b are orthogonal, then 𝒂. 𝒃 = 0.



cubic lattice: angle between directions
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angle between direction [110] and [101]

𝒂 ∙ 𝒃 = 𝑎𝑥𝑏𝑥 + 𝑎𝑦𝑏𝑦 + 𝑎𝑧𝑏𝑧

(1,1,0) ∙ (1,0,1)= 1 ∙ 1+ 1 ∙ 0 + 0 ∙ 1= 1

magnitudes  𝑎 = 12 + 12 + 02 = 2

   𝑏 = 12 + 02 + 12 = 2

[101] [110]

1 = 2cos 𝛼 → α=60°
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Cross product
• The cross product of two vectors forming an angle 𝛼 is a vector perpendicular to these

vectors, with the magnitude: 
• 𝒂 × 𝒃 = 𝑎𝑏sin𝛼

• In an orthonormal basis (i,j,k), the Cross product of two vectors 𝒂 and b is:  

• 𝒂 × 𝒃 = −𝒃 × 𝒂
• Two vectors parallel have a zero cross product. 

Reminder: Basics of Euclidian Geometry
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▪ Calculation methods:

▪ Determinant:  ▪ Practical way: :

𝑎𝑥

𝑎𝑦

𝑎𝑧

×

𝑏𝑥

𝑏𝑦

𝑏𝑧

= 

𝑎𝑥

𝑎𝑦

𝑎𝑧

×

𝑏𝑥

𝑏𝑦

𝑏𝑧

𝒊 −

𝑎𝑥

𝑎𝑦

𝑎𝑧

×

𝑏𝑥

𝑏𝑦

𝑏𝑧

𝒋 +

𝑎𝑥

𝑎𝑦

𝑎𝑧

×

𝑏𝑥

𝑏𝑦

𝑏𝑧

𝒌



Reminder: Line in 3D
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• A line is defined by 2 points 𝐴 =

𝑥𝐴

𝑦𝐴

𝑧𝐴

 and B =

𝑥𝐵

𝑦𝐵

𝑧𝐵

 or a point A and a direction 𝑨𝑩 =

𝑥𝐵 − 𝑥𝐴

𝑦𝐵 − 𝑦𝐴

𝑧𝐵 − 𝑧𝐴

 :

• This can be expressed in two ways: 

• Parametric equation:  𝐷 = 𝑀 =
𝑥
𝑦
𝑧

 ∃𝜆 ∈ ℝ 𝑨𝑴 = 𝜆𝑨𝑩  

• which we can write: 

• A set of linear equations: 𝐷 = 𝑀 =
𝑥
𝑦
𝑧

𝑤𝑖𝑡ℎ

𝑥 = 𝑥𝑎 + 𝜆 𝑥𝐵 − 𝑥𝐴

𝑦 = 𝑦𝑎 + 𝜆 𝑦𝐵 − 𝑦𝐴

𝑧 = 𝑧𝑎 + 𝜆 𝑧𝐵 − 𝑧𝐴

→ line as intersect of two planes



Reminder: plane in 3D

19

• A plane is defined by 3 points 𝐴 =

𝑥𝐴

𝑦𝐴

𝑧𝐴

, B =

𝑥𝐵

𝑦𝐵

𝑧𝐵

and C =

𝑥𝐶

𝑦𝐶

𝑧𝐶

or a point A and a normal 𝒏 =

𝑛𝑥

𝑛𝑦

𝑛𝑧

= 
𝑎
𝑏
𝑐

• This can be expressed in a simple way as: 𝑃 = 𝑀 =
𝑥
𝑦
𝑧

, 𝑨𝑴. 𝒏 = 0  

• One can extract the linear equation: for 𝑎, 𝑏, 𝑐, 𝑑 ∈ ℝ4, 𝑃 = 𝑀 =
𝑥
𝑦
𝑧

, 𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 − 𝑑 = 0



▪ Volume 

Reminder: Basics of Eucledian Geometry
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▪ Angles

▪ The angle between two vectors can be calcluated from the dot or the scalar products.

▪ Angle between a line and a plane: 
Complementary of the angle between the line 
direction and the normal of the plan 

▪  Angle between two planes: 
Angle between their normals: 

x x x



▪ Crystal or lattice  planes are planes that pass through at least 3 lattice points.

▪ They can be defined by the intercept of the plane with the basis axis: 

▪ Because of the translational symmetry of the Bravais lattice, a lattice plane contains 

an infinite number of lattice points

a

b

c

2a

3b

1c

1

2
 

1

3
 

1

1
 









1

2
   

1

3
   

1

1
  6  = (3 2 6) 

Crystal planes

lowest common multiple 

take the inverse



How to find Miller indices for planes
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1. Find the point where the plane intersects each axis. If the plane never intersects an axis 
because it is parallel to that axis, the intersection point is ∞. If the plane goes to the 

origin, you have to look at a plane parallel to it (or change the origin)
2. Take the inverse of each intersection point, 

3. Put those 3 values in the proper (hkl) format. Miller indices are integers with no common 

factors



Crystal planes and Miller indices

▪ Find the intercepts of the crystal plane on the crystal axes in units of their 
respective lattice constants a, b, and c 

▪ Take the reciprocals of these numbers and then reduce these to the smallest three 
integers that have the same ratio. The result (hkl) are the Miller indices of that 
plane

(100) (110) (111)

(200) (213) (012)

a b

c



Lattice/crystal planes
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We consider not just one plane but the crystal/lattice planes is a set of parallel equally spaced 
lattice planes which together contain all the points of the Bravais lattice. Such families play an 

important role in X-ray diffraction as we will see later. In the example above all planes on the left 
hand side picture belong to one family, all planes on the right hand side to another family



Miller indices of lattice planes
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a

b

c

(hkl)

coordinates as a fraction of the unit vector 
along the axis x,y,z

lattice plane is characterized by its Miller indices 
(hkl)

any other plane parallel to it can be written as

where C is a constant 

Cz
c

l
y

b

k
x

a

h
=++



Miller indices of lattice planes in cubic system
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a

b

c

(hkl)

For a cubic lattice where a=b=c (orthonormal 
basis), this simplifies to

hx+ky+lz=Ca

one can also express this as in the orthonormal 
basis ℬ(𝑂, 𝒙, 𝒚, 𝒛), the equation of an (hkl) plane that 

intercepts the axis at points 

𝐴
𝑎

ℎ
, 0,0 ; 𝐵 0,

𝑎

𝑘
, 0 ;  𝐶 0,0,

𝑎

𝑙
 where 𝑎 is the edge 

of the cube, is given by:

𝒫𝑛
(ℎ𝑘𝑙)

= 𝑥, 𝑦, 𝑧 ∈ ℝ3/ℎ𝑥 + 𝑘𝑦 + 𝑙𝑧 = 𝑛𝑎

𝒫
ℎ𝑘𝑙

= 𝑥, 𝑦, 𝑧 ∈ Τℝ3 ℎ 𝑥 + 𝑘𝑦 + 𝑙𝑧 = 𝑎

and any other plane parallel to it as

cubic
a = b = c



Miller indices of planes
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The intersects of plane EMS:  ½, 1, 1, 

Inverse of the intercepts: 2,1,1, 

so the Miller index is  (211)

obtained by considering E’M’S’

Intersects: 1,2,2   

Inverse of intersects: 1, ½,½

which expressed as whole numbers give the 

same Miller indices (211)

The Miller indices h,k,l must be integer values 

and they must be co-prime, meaning they have 

no common factor other than 1



▪ The plane parallel to the plane (ABC) and passing through the 

origin O is a crystal plane belonging to the family of planes 

ℎ𝑘𝑙 . 

▪ Assuming that the distance between two (hkl) planes is the same 

for all consecutive planes, this distance is given by ON, which is 

the projection of the vector OA on the normal to the plane 

▪  𝑂𝑁 = 𝑑(ℎ𝑘𝑙) = 𝑶𝑨 ∙ 𝒏𝒉𝒌𝒍

Distance between crystal planes

28

𝑑ℎ𝑘𝑙

β

γ

𝑑(ℎ𝑘𝑙) =
𝑎

ℎ2 +𝑘2 +𝑙2

•The distance between crystal planes 𝑑(ℎ𝑘𝑙) is very 

important in crystallography and X-ray diffraction. 
Bragg law



Cubic system
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For the cubic system, crystal directions [hkl] are perpendicular to the crystal 

planes (hkl). 

a = b = c

 =  =  = 90º

This is only true when (hkl) and [hkl] are defined in the orthonormal basis!



Miller indices of planes

• Familiy of planes, not just the ones which are parallel but equivalent by the 
symmetry of the lattice

{hkℓ} 

• Same as for the family of direction, the multiplicity depends on the 
symmetry of the crystal system

• cubic crystal system the (110) and (011) planes belong to the same {110} set of 
planes. 

• tetragonal crystal system the (110) and (011) are not equivalent and belong to 
different  sets {110} and {011} 
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Lattice/Crystal planes and Miller indices
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• The Miller indices provide a way to identify a plane, but this plane does not have to be a 

lattice or crytal plane. 
• So for the (020) plane: it is not a crystal plane for the primitive cubic, but it is one for the 

BCC and FCC 

→ note that 0,2,0 are not co-prime, one can divide by 2! This rule holds for primitive 
unit cells

• Note that the configuration of atoms in the 100  and the 200 lattice planes, in the BCC 
and FCC structures, is the same ! These belong to the same family of planes. 

• The position of an atom in a motif does not always coincide with a Bravais lattice point 



Miller indices and lattice planes
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Leaving the cubic structure, as we reduce the symmetry of the crystal structure, we change 

the rotational symmetry we have shown before

�

�

�

�

�

�

�

�

�

�

�

�

o Family of planes of symmetry 110

o Same atom configuration and same symmetry

�

�

�

▪ Family of planes and directions differ as the symmetry of the Bravais lattice changes. 

o Different atom configuration and different

symmetry. 

Cubic

Primitive:

Tetragonal

Primitive:

�

�

�
�

�



Zone axis, intersection of planes

• a zone is defined as a set of faces or planes in a crystal whose intersections are 
all parallel

• the common direction of the intersection is called the zone axis, all directions 
in crystals are zone axes
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the six faces of a pencil all lie in a zone because 
they all intersect along one direction – the 
pencil lead direction – which is the zone axis

can also be more or less faces (think of a match 
box)

→ each crystal axis is the zone axis for four 
faces, or two crystallographically equivalent 
pairs of faces. Each face lies in two zones

→ a crystal plane lies in two zones 



Zone axis
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the [001] direction is the zone axis of the {100} and {110} 
family of planes. 

If two planes (h₁k₁l₁) and (h₂k₂l₂) belong to the same zone, then 
their zone axis [u v w] satisfies the 
zone law equation also called Weiss zone law

h1u+k1v+l1w=0
h2u+k2v+l2w=0

This means that the direction [u v w] is perpendicular to the the 
two plane normals → find the vector which is perpendicular to 
two the two normals
→ cross product of the two normals

1
0
0

×
1
1
0

=i(0⋅0−0⋅1)+j(1⋅0−0⋅1)+k(1⋅1−0⋅1) = 
0
0
1

in the cubic system, the normal to the plane (hkl) is the direction [hkl]

orthonormal basis (i,j,k) →[001]



Importance of zone axis

• When a crystal is aligned along a zone axis, many crystallographic planes that 
belong to that zone contribute to the diffraction pattern. 

• This leads to a high-symmetry diffraction pattern, where spots are arranged 
according to the symmetry of the zone axis. 

• In transmission electron microscopy (TEM), indexing diffraction patterns relies 
on identifying zone axes.
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Trigonal and hexagonal Bravais lattices:
Miller-Bravais indices
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Miller indices discussed so far are valid for all Bravais 
lattices, however they are not very convenient for trigonal 

and hexagonal systemes

We have seen that, for a cubic system, we can list all the 

members of a family {hkl} by writing down all the 
permutations of the three numbers h, k, and l and their 

negatives.

 If the symmetry of the system is lower than cubic, then the members of a family are still given by 

permutations, but not all permutations belong to the same family. For instance in the tetragonal 

system for {110} and {011}. In the rhombohedral system we have {100} = {(100), (-100), (010), (0-

10), (001), (00-1)} as a family set of equivalent planes. In the orthorhombic system {100} = 

{(100), (-100)} contains just two type of planes. 

The only exception to this rule of index permutations is the hexagonal crystal system.



Trigonal and hexagonal Bravais lattices:
Miller-Bravais indices
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In the hexagonal system one does not obtain equivalent planes by 
permutation of the numbers

Here we would have in the Miller notation for instance
 {100}hexagonal = (100), (010) and (-110)

To overcome this problem, often a fourth axis is used in the hexagonal 
system: i.e. an . The index on this axis is called “i”

The Miller-Bravais indices for a plane are now
(hkil)  where i= -(h+k)

This notation has the advantage that the planes 
of the zone belonging to the z-axis can be 

obtained by permutation



Summary of notations

(h, k, l) is for points. Remember to use the negative sign (-h) instead of bar sign 

(തℎ) and don’t reduce fractions–these rules apply to directions and planes. 

[hkl] is for a specific direction. 
<hkl> is for a family of directions. 

(hkl) is for a specific plane. Remember about reciprocal (inverse) space in planes! 
{hkl} is for a family of planes. 
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Summary

• we defined the mathematical description of the crystalline lattice

• we introduced Miller indices for points, directions and planes

• we talked about family of directions which depend on the symmetry of the 
crystal system

• reminder of dot product, cross product, equations of lines and planes and how 
they are used in crystallography

• The cubic system in the orthonormal basis leads to easy calculation

• We defined zone axis and how to find them

• mentioned 

→ next week: reciprocal space lattice and diffraction
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